If you're seeing this message, it means we're having trouble loading external resources on our website.

もしあなたがウェブフィルターを利用している場合には,*.kastatic.org*.kasandbox.org がブロックされていないことを確認して下さい。

メインのコンテンツ

かけ算の性質

乗法の交換法則,結合法則,単位元の性質について探求します。
この記事では,かけ算の 3 つの主な性質について学びましょう。ここにはこれらの性質を簡単にまとめています:
乗算の交換法則: 因数 (因数とはかけ算をしている数のことです) の順番を変えても積 (積とはかけ算をした答えのことです) の値は変わりません。たとえば,4, times, 3, equals, 3, times, 4 です。
乗算の結合法則: 因数のグループを変えてもその積は変わりません。たとえば,left parenthesis, 2, times, 3, right parenthesis, times, 4, equals, 2, times, left parenthesis, 3, times, 4, right parenthesis です。
乗算の単位元の性質: 何かの数に 1 をかけても,その数は変わりません。たとえば,7, times, 1, equals, 7 です。

乗算の交換法則

乗算の交換法則は因数の順番を変えてもその積の値は変わらないということをいっています。これがその例です:
4, times, 3, equals, 3, times, 4
たとえかけ算の順番が逆になっても積は両方とも 12 のままであることに注意してください。
次はもっと多くの因数がある例です:
1, times, 2, times, 3, times, 4, equals, 4, times, 3, times, 2, times, 1
積は両方とも 24 であることに注意してください。
乗算の交換法則の例になっているのはどれですか?
答えを 1 つだけ選んで下さい:

乗算の結合法則

乗算の結合法則は因数のグループを変えてもその積の値は変わらないということをいっています。これがその例です:
start color #11accd, left parenthesis, 2, times, 3, right parenthesis, times, 4, end color #11accd, equals, start color #e07d10, 2, times, left parenthesis, 3, times, 4, right parenthesis, end color #e07d10
カッコはどの計算から先にするかを示すものだったことを思い出しましょう。すると私たちは左辺を次のように評価します:
empty space, start color #11accd, left parenthesis, 2, times, 3, right parenthesis, times, 4, end color #11accd
equals, 6, times, 4
equals, 24
そしてこれが私たちが右辺をどう評価するかです:
empty space, start color #e07d10, 2, times, left parenthesis, 3, times, 4, right parenthesis, end color #e07d10
equals, 2, times, 12
equals, 24
左辺では 23 を先にかけ,右辺では 34 を先にかけましたが,両辺とも積は 24 になったことに注意してください。
乗算の結合法則の例になっているのはどれですか?
答えを 1 つだけ選んで下さい:

乗算の単位元の性質

乗算の単位元の性質とは,何かの数に 1 をかけても,その数が変わらないということを言っています。 これがその 1 つの例です:
7, times, 1, equals, 7
乗算の交換法則を考えると。かけ算では 1 が先にあっても後ろにあってもその積は同じということがわかります。これが 1 がかけ算の後ろにある場合の乗算の単位元の性質の例です:
1, times, 6, equals, 6
乗算の単位元の性質の例になっているのはどれですか?
答えを 1 つだけ選んで下さい:

会話に参加したいでしょうか?

まだ投稿がありません。
英語は理解できますか? ここをクリックしてカーンアカデミーの英語のサイトでのさらなる議論を見て下さい。